ALGEBRA AND TRIGONOMETRY

$\begin{array}{ll}x^{m} x^{n}=x^{m+n} & \frac{x^{m}}{x^{n}}=x^{m-n} \\ \left(x^{m}\right)^{n}=x^{m n} & x^{-n}=1\end{array}$
$\left(x^{m}\right)^{n}=x^{m n} \quad x^{-n}=\frac{1}{x^{n}}$
$(x y)^{n}=x^{n} y^{n}$
$x^{1 / n}=\sqrt[n]{x}$
$\left(\frac{x}{y}\right)^{n}=\frac{x^{n}}{y^{n}}$
$\sqrt[n]{x y}=\sqrt[n]{x} \sqrt[n]{y}$
$x^{m / n}=\sqrt[n]{x^{m}}=(\sqrt[n]{x})^{m}$
$\sqrt[m]{\sqrt[n]{x}}=\sqrt[n]{\sqrt[m]{x}}=\sqrt[m n-]{x} \quad \sqrt[n]{\frac{x}{y}}=\frac{\sqrt[n]{x}}{\sqrt[n]{y}}$

SPECIAL PRODUCTS

$(x+y)^{2}=x^{2}+2 x y+y^{2}$
$(x-y)^{2}=x^{2}-2 x y+y^{2}$
$(x+y)^{3}=x^{3}+3 x^{2} y+3 x y^{2}+y^{3}$
$(x-y)^{3}=x^{3}-3 x^{2} y+3 x y^{2}-y^{3}$

FACTORING FORMULAS

$x^{2}-y^{2}=(x+y)(x-y)$
$x^{2}+2 x y+y^{2}=(x+y)^{2}$
$x^{2}-2 x y+y^{2}=(x-y)^{2}$
$x^{3}+y^{3}=(x+y)\left(x^{2}-x y+y^{2}\right)$
$x^{3}-y^{3}=(x-y)\left(x^{2}+x y+y^{2}\right)$

QUADRATIC FORMULA

If $a x^{2}+b x+c=0$, then

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

INEQUALITIES AND ABSOLUTE VALUE

If $a<b$ and $b<c$, then $a<c$.
If $a<b$, then $a+c<b+c$.
If $a<b$ and $c>0$, then $c a<c b$.
If $a<b$ and $c<0$, then $c a>c b$.
If $a>0$, then
$|x|=a$ means $x=a$ or $x=-a$.
$|x|<a$ means $-a<x<a$.
$|x|>a$ means $x>a$ or $x<-a$.
$|x|=a$ means $x=a$ or $x=-a$.
$|x|>a$ means $x>a$ or $x<-a$.

GEOMETRIC FORMULAS

Formulas for area A, perimeter P, circumference C, volume V :

Rectangle

$$
\begin{aligned}
& A=l w \\
& P=2 l+2 w
\end{aligned}
$$

Triangle

$$
A=\frac{1}{2} b h
$$

Circle

$$
\begin{aligned}
& A=\pi r^{2} \\
& C=2 \pi r
\end{aligned}
$$

Cylinder

$$
V=\pi r^{2} h
$$

Box

$$
V=l w h
$$

Pyramid

$$
V=\frac{1}{3} h a^{2}
$$

Sphere

$$
\begin{aligned}
V & =\frac{4}{3} \pi r^{3} \\
A & =4 \pi r^{2}
\end{aligned}
$$

Cone

$$
V=\frac{1}{3} \pi r^{2} h
$$

HERON'S FORMULA

Area $=\sqrt{s(s-a)(s-b)(s-c)}$
where $s=\frac{a+b+c}{2}$

Distance between $P_{1}\left(x_{1}, y_{1}\right)$ and $P_{2}\left(x_{2}, y_{2}\right)$:

$$
d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
$$

Midpoint of $P_{1} P_{2}: \quad\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$

LINES

Slope of line through
$P_{1}\left(x_{1}, y_{1}\right)$ and $P_{2}\left(x_{2}, y_{2}\right)$

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

Point-slope equation of line

$$
y-y_{1}=m\left(x-x_{1}\right)
$$

through $P_{1}\left(x_{1}, y_{1}\right)$ with slope m
Slope-intercept equation of

$$
y=m x+b
$$

line with slope m and y-intercept b
Two-intercept equation of line with x-intercept a and y-intercept b

$$
\frac{x}{a}+\frac{y}{b}=1
$$

LOGARITHMS

$y=\log _{a} x$ means $a^{y}=x$
$\log _{a} a^{x}=x$
$a^{\log _{a} x}=x$
$\log _{a} 1=0$
$\log x=\log _{10} x$
$\log _{a} a=1$
$\ln x=\log _{e} x$
$\log _{a} x y=\log _{a} x+\log _{a} y$
$\log _{a}\left(\frac{x}{y}\right)=\log _{a} x-\log _{a} y$
$\log _{a} x^{b}=b \log _{a} x$
$\log _{b} x=\frac{\log _{a} x}{\log _{a} b}$

EXPONENTIAL AND LOGARITHMIC FUNCTIONS

Linear functions: $f(x)=m x+b$

$f(x)=b$
$f(x)=m x+b$

Power functions: $\quad f(x)=x^{n}$

$f(x)=x^{2}$

$f(x)=x^{3}$

Root functions: $f(x)=\sqrt[n]{x}$

$$
f(x)=\sqrt{x}
$$

$f(x)=\sqrt[3]{x}$

Reciprocal functions: $f(x)=1 / x^{n}$

$f(x)=\frac{1}{x}$

$f(x)=\frac{1}{x^{2}}$

Absolute value function
Greatest integer function

$f(x)=|x|$

$f(x)=\llbracket x \rrbracket$

COMPLEX NUMBERS

For the complex number $z=a+b i$
the conjugate is $\bar{z}=a-b i$
the modulus is $|z|=\sqrt{a^{2}+b^{2}}$
the argument is θ, where $\tan \theta=b / a$

Polar form of a complex number
For $z=a+b i$, the polar form is

$$
z=r(\cos \theta+i \sin \theta)
$$

where $r=|z|$ is the modulus of z and θ is the argument of z

De Moivre's Theorem

$$
\begin{aligned}
z^{n} & =[r(\cos \theta+i \sin \theta)]^{n}=r^{n}(\cos n \theta+i \sin n \theta) \\
\sqrt[n]{z} & =[r(\cos \theta+i \sin \theta)]^{1 / n} \\
& =r^{1 / n}\left(\cos \frac{\theta+2 k \pi}{n}+i \sin \frac{\theta+2 k \pi}{n}\right)
\end{aligned}
$$

where $k=0,1,2, \ldots, n-1$

ROTATION OF AXES

Rotation of axes formulas
$x=X \cos \phi-Y \sin \phi$
$y=X \sin \phi+Y \cos \phi$

Angle-of-rotation formula for conic sections
To eliminate the $x y$-term in the equation

$$
A x^{2}+B x y+C y^{2}+D x+E y+F=0
$$

rotate the axis by the angle ϕ that satisfies

$$
\cot 2 \phi=\frac{A-C}{B}
$$

POLAR COORDINATES

CONIC SECTIONS

Circles

$(x-h)^{2}+(y-k)^{2}=r^{2}$

Parabolas

Focus $(0, p)$, directrix $y=-p$

$y=a(x-h)^{2}+k$,
$a<0, \quad h>0, \quad k>0$
Ellipses

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1
$$

$$
\frac{x^{2}}{b^{2}}+\frac{y^{2}}{a^{2}}=1
$$

Foci $(\pm c, 0), c^{2}=a^{2}-b^{2}$
Hyperbolas

$$
\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1
$$

Foci $(\pm c, 0), c^{2}=a^{2}+b^{2}$

Focus $(p, 0)$, directrix $x=-p$

$y=a(x-h)^{2}+k$,
$a>0, \quad h>0, \quad k>0$

Foci $(0, \pm c), c^{2}=a^{2}-b^{2}$

$$
-\frac{x^{2}}{b^{2}}+\frac{y^{2}}{a^{2}}=1
$$

Foci $(0, \pm c), c^{2}=a^{2}+b^{2}$

FOURTH EDITION

ALGEBRA AND TRIGONOMETRY

James Stewart received his Ms from Stanford University and his PhD from the University of Toronto. He did research at the University of London and was influenced by the famous mathematician George Polya at Stanford University. Stewart is Professor Emeritus at McMaster University and is currently Professor of Mathematics at the University of Toronto. His research field is harmonic analysis and the connections between mathematics and music. James Stewart is the author of a bestselling calculus textbook series published by Cengage Learning, including Calculus, Calculus: Early Transcendentals, and Calculus: Concepts and Contexts; a series of precalculus texts; and a series of highschool mathematics textbooks.

Lothar RedLin grew up on Vancouver Island, received a Bachelor of Science degree from the University of Victoria, and received a PhD from McMaster University in 1978. He subsequently did research and taught at the University of Washington, the University of Waterloo, and California State University, Long Beach. He is currently Professor of Mathematics at The Pennsylvania State University, Abington Campus. His research field is topology.

Saleem Watson received his Bachelor of Science degree from Andrews University in Michigan. He did graduate studies at Dalhousie University and McMaster University, where he received his PhD in 1978. He subsequently did research at the Mathematics Institute of the University of Warsaw in Poland. He also taught at The Pennsylvania State University. He is currently Professor of Mathematics at California State University, Long Beach. His research field is functional analysis.

Stewart, Redlin, and Watson have also published Precalculus, College Algebra, Trigonometry, and (with Phyllis Panman) College Algebra: Concepts and Contexts.

About the Cover

The cover photograph shows L'Hemisfèric, which is a planetarium in the City of Arts and Sciences in Valencia, Spain. In the background is the Principe Felipe Science Museum, an interactive museum intended to resemble the skeleton of a whale. Both structures were designed by the Spanish architect Santiago Calatrava. Calatrava has always been very interested in how mathematics can help him realize the buildings he imagines. As
a young student, he taught himself descriptive geometry from books in order to represent three-dimensional objects in two dimensions. Trained as both an engineer and an architect, he wrote a doctoral thesis in 1981 entitled "On the Foldability of Space Frames," which is filled with mathematics, especially geometric transformations. His strength as an engineer enables him to be daring in his architecture.

FOURTH EDITION

ALGEBRA AND TRIGONOMETRY

James Stewart
McMASTER UNIVERSITY AND UNIVERSITY OF TORONTO

Lothar Redlin

THE PENNSYLVANIA STATE UNIVERSITY

Saleem Watson

CALIFORNIA STATE UNIVERSITY, LONG BEACH

With the assistance of Phyllis Panman

- CENGAGE Learning

This is an electronic version of the print textbook. Due to electronic rights restrictions, some third party content may be suppressed. Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. The publisher reserves the right to remove content from this title at any time if subsequent rights restrictions require it. For valuable information on pricing, previous editions, changes to current editions, and alternate formats, please visit www.cengage.com/highered to search by ISBN\#, author, title, or keyword for materials in your areas of interest.

Important Notice: Media content referenced within the product description or the product text may not be available in the eBook version.

Algebra and Trigonometry, Fourth Edition James Stewart, Lothar Redlin, Saleem Watson

Product Director: Terry Boyle
Product Manager: Gary Whalen
Content Developer: Stacy Green
Associate Content Developer: Samantha Lugtu
Product Assistant: Katharine Werring
Media Developer: Lynh Pham
Senior Marketing Manager: Mark Linton Content Project Manager: Jennifer Risden
Art Director: Vernon Boes
Manufacturing Planner: Rebecca Cross
Production Service: Martha Emry BookCraft
Photo Researcher: Lumina Datamatics
Text Researcher: Lumina Datamatics
Copy Editor: Barbara Willette
Illustrator: Precision Graphics; Graphic World, Inc.

Text Designer: Diane Beasley Cover Designer: Cheryl Carrington
Cover Image: Robert Harding/Masterfile Compositor: Graphic World, Inc.
© 2016, 2012 Cengage Learning
WCN: 02-200-203
ALL RIGHTS RESERVED. No part of this work covered by the copyright herein may be reproduced, transmitted, stored, or used in any form or by any means graphic, electronic, or mechanical, including but not limited to photocopying, recording, scanning, digitizing, taping, Web distribution, information networks, or information storage and retrieval systems, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without the prior written permission of the publisher.

For product information and technology assistance, contact us at Cengage Learning Customer \& Sales Support, 1-800-354-9706.

For permission to use material from this text or product, submit all requests online at www.cengage.com/permissions.

Further permissions questions can be e-mailed to
permissionrequest@cengage.com.

Library of Congress Control Number: 2014956300
Student Edition:
ISBN: 978-1-305-07174-2
Loose-leaf Edition:
ISBN: 978-1-305-58604-8

Cengage Learning

20 Channel Center Street
Boston, MA 02210
USA

Cengage Learning is a leading provider of customized learning solutions with office locations around the globe, including Singapore, the United Kingdom, Australia, Mexico, Brazil, and Japan. Locate your local office at
www.cengage.com/global.

Cengage Learning products are represented in Canada by Nelson Education, Ltd.

To learn more about Cengage Learning Solutions, visit www.cengage.com.
Purchase any of our products at your local college store or at our preferred online store www.cengagebrain.com.

Printed in the United States of America
Print Number: 01 Print Year: 2014
PREFACE x
TO THE STUDENT xvii
ARE YOU READY FOR THIS COURSE? xix
PROLOGUE: PRINCIPLES OF PROBLEM SOLVING P1
chapter P Prerequisites 1
Chapter Overview
P. 1 Modeling the Real World with Algebra 2
P. 2 Real Numbers 6
P. 3 Integer Exponents and Scientific Notation 18
P. 4 Rational Exponents and Radicals 25
P. 5 Algebraic Expressions 32
P. 6 Factoring 37
P. 7 Rational Expressions 44
P. 8 Solving Basic Equations 53
P. 9 Modeling with Equations 61
Chapter P Review 74
Chapter P Test 79
FOCUS ON MODELING Making the Best Decisions 81
chapter 1 Equations and Graphs 87
Chapter Overview 87
1.1 The Coordinate Plane 88
1.2 Graphs of Equations in Two Variables; Circles 94
1.3 Lines 104
1.4 Solving Quadratic Equations 115
1.5 Complex Numbers 126
1.6 Solving Other Types of Equations 132
1.7 Solving Inequalities 141
1.8 Solving Absolute Value Equations and Inequalities 150
1.9 Solving Equations and Inequalities Graphically 154
1.10 Modeling Variation 159
Chapter 1 Review 167
Chapter 1 Test 172
FOCUS ON MODELING Fitting Lines to Data 174
chapter 2 Functions 183
Chapter Overview 183
2.1 Functions 184
2.2 Graphs of Functions 195
2.3 Getting Information from the Graph of a Function 206
2.4 Average Rate of Change of a Function 219
2.5 Linear Functions and Models 226
2.6 Transformations of Functions 234
2.7 Combining Functions 246
2.8 One-to-One Functions and Their Inverses 255
Chapter 2 Review 265
Chapter 2 Test 271

- FOCUS ON MODELING Modeling with Functions 273
chapter 3 Polynomial and Rational Functions 281
Chapter Overview 281
3.1 Quadratic Functions and Models 282
3.2 Polynomial Functions and Their Graphs 290
3.3 Dividing Polynomials 305
3.4 Real Zeros of Polynomials 311
3.5 Complex Zeros and the Fundamental Theorem of Algebra 323
3.6 Rational Functions 331
3.7 Polynomial and Rational Inequalities 347
Chapter 3 Review 353
Chapter 3 Test 359
- FOCUS ON MODELING Fitting Polynomial Curves to Data 361
chapter 4 Exponential and Logarithmic Functions 365
Chapter Overview 365
4.1 Exponential Functions 366
4.2 The Natural Exponential Function 374
4.3 Logarithmic Functions 380
4.4 Laws of Logarithms 390
4.5 Exponential and Logarithmic Equations 396
4.6 Modeling with Exponential Functions 406
4.7 Logarithmic Scales 417
Chapter 4 Review 422
Chapter 4 Test 427
- FOCUS ON MODELING Fitting Exponential and Power Curves to Data 428
Cumulative Review Test: Chapters 2, 3, and 4 (Website)
chapter 5 Trigonometric Functions: Right Triangle ApPROACH 437
Chapter Overview 437
5.1 Angle Measure 438
5.2 Trigonometry of Right Triangles 448
5.3 Trigonometric Functions of Angles 457
5.4 Inverse Trigonometric Functions and Right Triangles 467
5.5 The Law of Sines 474
5.6 The Law of Cosines 482
Chapter 5 Review 490
Chapter 5 Test 497
FOCUS ON MODELING Surveying 499
chapter 6 Trigonometric Functions: Unit Circle Approach 503
Chapter Overview 503
6.1 The Unit Circle 504
6.2 Trigonometric Functions of Real Numbers 511
6.3 Trigonometric Graphs 521
6.4 More Trigonometric Graphs 534
6.5 Inverse Trigonometric Functions and Their Graphs 541
6.6 Modeling Harmonic Motion 547
Chapter 6 Review 562
Chapter 6 Test 567
- FOCUS ON MODELING Fitting Sinusoidal Curves to Data 568
chapter 7 Analytic Trigonometry 573
Chapter Overview 573
7.1 Trigonometric Identities 574
7.2 Addition and Subtraction Formulas 581
7.3 Double-Angle, Half-Angle, and Product-Sum Formulas 589
7.4 Basic Trigonometric Equations 600
7.5 More Trigonometric Equations 606
Chapter 7 Review 612
Chapter 7 Test 616
FOCUS ON MODELING Traveling and Standing Waves 617
Cumulative Review Test: Chapters 5, 6, and 7 (Website)
chapter 8 Polar Coordinates and Parametric Equations 623
Chapter Overview 623
8.1 Polar Coordinates 624
8.2 Graphs of Polar Equations 630
8.3 Polar Form of Complex Numbers; De Moivre's Theorem 638
8.4 Plane Curves and Parametric Equations 647
Chapter 8 Review 656
Chapter 8 Test 660
- FOCUS ON MODELING The Path of a Projectile 661
chapter 9 Vectors in Two and Three Dimensions 665
Chapter Overview 665
9.1 Vectors in Two Dimensions 666
9.2 The Dot Product 675
9.3 Three-Dimensional Coordinate Geometry 683
9.4 Vectors in Three Dimensions 689
9.5 The Cross Product 695
9.6 Equations of Lines and Planes 702
Chapter 9 Review 706
Chapter 9 Test 711
- FOCUS ON MODELING Vector Fields 712
Cumulative Review Test: Chapters 8 and 9 (Website)
chapter 10 Systems of Equations and Inequalities 715
Chapter Overview 715
10.1 Systems of Linear Equations in Two Variables 716
10.2 Systems of Linear Equations in Several Variables 726
10.3 Partial Fractions 735
10.4 Systems of Nonlinear Equations 740
10.5 Systems of Inequalities 745
Chapter 10 Review 755
Chapter 10 Test 759
■ FOCUS ON MODELING Linear Programming 760
chapter 11 Matrices and Determinants 767
Chapter Overview 767
11.1 Matrices and Systems of Linear Equations 768
11.2 The Algebra of Matrices 781
11.3 Inverses of Matrices and Matrix Equations 793
11.4 Determinants and Cramer's Rule 803
Chapter 11 Review 814
Chapter 11 Test 819
- FOCUS ON MODELING Computer Graphics 820
chapter 12 Conic Sections 825
Chapter Overview 825
12.1 Parabolas 826
12.2 Ellipses 834
12.3 Hyperbolas 843
12.4 Shifted Conics 851
12.5 Rotation of Axes 860
12.6 Polar Equations of Conics 868
Chapter 12 Review 875
Chapter 12 Test 879
- FOCUS ON MODELING Conics in Architecture 880
Cumulative Review Test: Chapters 10, 11, and 12 (Website)
chapter 13 Sequences and Series 885
Chapter Overview 885
13.1 Sequences and Summation Notation 886
13.2 Arithmetic Sequences 897
13.3 Geometric Sequences 902
13.4 Mathematics of Finance 911
13.5 Mathematical Induction 917
13.6 The Binomial Theorem 923
Chapter 13 Review 931
Chapter 13 Test 936
- FOCUS ON MODELING Modeling with Recursive Sequences 937
chapter 14 Counting and Probability 941
Chapter Overview 941
14.1 Counting 942
14.2 Probability 954
14.3 Binomial Probability 966
14.4 Expected Value 971
Chapter 14 Review 975
Chapter 14 Test 980
- FOCUS ON MODELING The Monte Carlo Method 981
Cumulative Review Test: Chapters 13 and 14 (Website)
APPENDIX A Geometry Review 985
APPENDIX B Calculations and Significant Figures 991
APPENDIX C Graphing with a Graphing Calculator 993
APPENDIX D Using the TI-83/84 Graphing Calculator 999
ANSWERS A 1
INDEX 11

For many students an Algebra and Trigonometry course represents the first opportunity to discover the beauty and practical power of mathematics. Thus instructors are faced with the challenge of teaching the concepts and skills of the subject while at the same time imparting a sense of its utility in the real world. In this edition, as in the previous editions, our aim is to provide instructors and students with tools they can use to meet this challenge.

In this Fourth Edition our objective is to further enhance the effectiveness of the book as an instructional tool for instructors and as a learning tool for students. Many of the changes in this edition are a result of suggestions we received from instructors and students who are using the current edition; others are a result of insights we have gained from our own teaching. We have made several major changes in this edition. These include a restructuring of the beginning chapters to allow for an earlier introduction to functions. Some chapters have been reorganized and rewritten, new sections have been added (as described below), the review material at the end of each chapter has been substantially expanded, and exercise sets have been enhanced to further focus on the main concepts of algebra and trigonometry. In all these changes and numerous others (small and large) we have retained the main features that have contributed to the success of this book.

New to the Fourth Edition

- Early Chapter on Functions The chapter on functions now appears earlier in the book (Chapter 2). The review material (now in Chapters P and 1) has been streamlined and rewritten.
- Diagnostic Test A diagnostic test, designed to test preparedness for an algebra and trigonometry course, can be found at the beginning of the book (p. xix).
- Exercises More than 20% of the exercises are new, and groups of exercises now have headings that identify the type of exercise. New Skills Plus exercises in most sections contain more challenging exercises that require students to extend and synthesize concepts.
- Review Material The review material at the end of each chapter now includes a summary of Properties and Formulas and a new Concept Check which provides a step-by-step review of all the main concepts and applications of the chapter. Answers to the Concept Check questions are on tear-out sheets at the back of the book.
- Discovery Projects References to Discovery Projects, including brief descriptions of the content of each project, are located in boxes where appropriate in each chapter. These boxes highlight the applications of algebra and trigonometry in many different real-world contexts. (The projects are located at the book companion website: www.stewartmath.com.)
- CHAPTER P Prerequisites This chapter now concludes with two sections on equations. Section P. 8 is about basic equations, including linear and power equations, and Section P. 9 covers modeling with equations.
- CHAPTER 1 Equations and Graphs This new chapter includes an introduction to the coordinate plane and graphs of equations in two variables, as well as material on solving equations. Combining these topics in one chapter highlights the relationship between algebraic and graphical solutions of equations.
- CHAPTER 2 Functions This chapter now includes the new Section 2.5, "Linear Functions and Models." This section highlights the connection between the slope of a line and the rate of change of a linear function. These two interpretations of slope help prepare students for the concept of the derivative in calculus.
- CHAPTER 3 Polynomial and Rational Functions This chapter now includes the new Section 3.7, "Polynomial and Rational Inequalities." Section 3.6, "Rational Functions," has a new subsection on rational functions with "holes."
- CHAPTER 4 Exponential and Logarithmic Functions The chapter now includes two sections on the applications of these functions. Section 4.6, "Modeling with Exponential Functions," focuses on modeling growth and decay, Newton's Law of Cooling, and other such applications. Section 4.7, "Logarithmic Scales," covers the concept of a logarithmic scale with applications involving the pH , Richter, and decibel scales.
- CHAPTER 6 Trigonometric Functions: Unit Circle Approach This chapter includes a new subsection on the concept of phase shift as used in modeling harmonic motion.
- Two Chapters on Systems of Equations The material on solving systems of equations and inequalities is now in two chapters. Chapter 10 is about solving systems of equations in two or more variables algebraically (without using matrices), and solving systems of inequalities in two variables graphically. Chapter 11 covers solving systems of linear equations by using matrix methods.
- Appendix A: Geometry Review This appendix contains a review of the main concepts of geometry used in this book, including similarity and the Pythagorean Theorem.
- Appendix C: Graphing with a Graphing Calculator This appendix includes general guidelines on graphing with a graphing calculator, as well as guidelines on how to avoid common graphing pitfalls.
- Appendix D: Using the TI-83/84 Graphing Calculator In this appendix we provide simple, easy-to-follow, step-by-step instructions for using the TI-83/84 graphing calculators.

Teaching with the Help of This Book

We are keenly aware that good teaching comes in many forms and that there are many different approaches to teaching and learning the concepts and skills of algebra and trigonometry. The organization and exposition of the topics in this book are designed to accommodate different teaching and learning styles. In particular, each topic is presented algebraically, graphically, numerically, and verbally, with emphasis on the relationships between these different representations. The following are some special features that can be used to complement different teaching and learning styles:

Diagnostic Test For a student to achieve success in any mathematics course it is important that he or she has the necessary prerequisite knowledge. For this reason we have included four Diagnostic Tests at the beginning of the book (pages xix-xxi) to test preparedness for this course.
Exercise Sets The most important way to foster conceptual understanding and hone technical skill is through the problems that the instructor assigns. To that end we have provided a wide selection of exercises.

- Concept Exercises These exercises ask students to use mathematical language to state fundamental facts about the topics of each section.
- Skills Exercises These exercises reinforce and provide practice with all the learning objectives of each section. They comprise the core of each exercise set.
- Skills Plus Exercises The Skills Plus exercises contain challenging problems that often require the synthesis of previously learned material with new concepts.
- Applications Exercises We have included substantial applied problems from many different real-world contexts. We believe that these exercises will capture students' interest.
- Discovery, Writing, and Group Learning Each exercise set ends with a block of exercises labeled Discuss $■$ Discover $■$ Prove $■$ Write. These exercises are designed to encourage students to experiment, preferably in groups, with the concepts developed in the section and then to write about what they have learned rather than simply looking for the answer. New Prove exercises highlight the importance of deriving a formula.
- Now Try Exercise ... At the end of each example in the text the student is directed to one or more similar exercises in the section that help to reinforce the concepts and skills developed in that example.
- Check Your Answer Students are encouraged to check whether an answer they obtained is reasonable. This is emphasized throughout the text in numerous Check Your Answer sidebars that accompany the examples (see, for instance, pages 55, 69, and 135).

Flexible Approach to Trigonometry The trigonometry chapters of this text have been written so that either the right triangle approach or the unit circle approach may be taught first. Putting these two approaches in different chapters, each with its relevant applications, helps to clarify the purpose of each approach. The chapters introducing trigonometry are as follows.

- CHAPTER 5 Trigonometric Functions: Right Triangle Approach This chapter introduces trigonometry through the right triangle approach. This approach builds on the foundation of a conventional high-school course in trigonometry.
- CHAPTER 6 Trigonometric Functions: Unit Circle Approach This chapter introduces trigonometry through the unit circle approach. This approach emphasizes that the trigonometric functions are functions of real numbers, just like the polynomial and exponential functions with which students are already familiar.

Another way to teach trigonometry is to intertwine the two approaches. Some instructors teach this material in the following order: Sections 6.1, 6.2, 5.1, 5.2, 5.3, 6.3, 6.4, 6.5, $6.6,5.4,5.5$, and 5.6. Our organization makes it easy to do this without obscuring the fact that the two approaches involve distinct representations of the same functions.

Graphing Calculators and Computers We make use of graphing calculators and computers in examples and exercises throughout the book. Our calculator-oriented examples are always preceded by examples in which students must graph or calculate by hand so that they can understand precisely what the calculator is doing when they later use it to simplify the routine, mechanical part of their work. The graphing calculator sections, subsections, examples, and exercises, all marked with the special symbol w, are optional and may be omitted without loss of continuity.

- Using a Graphing Calculator General guidelines on using graphing calculators and a quick reference guide to using TI-83/84 calculators are available at the book companion website: www.stewartmath.com.
- Graphing, Regression, Matrix Algebra Graphing calculators are used throughout the text to graph and analyze functions, families of functions, and sequences; to calculate and graph regression curves; to perform matrix algebra; to graph linear inequalities; and other powerful uses.
- Simple Programs We exploit the programming capabilities of a graphing calculator to simulate real-life situations, to sum series, or to compute the terms of a recursive sequence (see, for instance, pages 664 and 940).

Focus on Modeling The theme of modeling has been used throughout to unify and clarify the many applications of algebra and trigonometry. We have made a special effort to clarify the essential process of translating problems from English into the language of mathematics (see pages 274 and 722).

- Constructing Models There are many applied problems throughout the book in which students are given a model to analyze (see, for instance, page 286). But the material on modeling, in which students are required to construct mathematical models, has been organized into clearly defined sections and subsections (see, for instance, pages 406, 547, and 721).
- Focus on Modeling Each chapter concludes with a Focus on Modeling section. For example, the Focus on Modeling after Chapter 1 introduces the basic idea of modeling a real-life situation by fitting lines to data (linear regression). Other sections present ways in which polynomial, exponential, logarithmic, and trigonometric functions, and systems of inequalities can all be used to model familiar phenomena from the sciences and from everyday life (see, for instance, pages 361, 428, and 568).

Review Sections and Chapter Tests Each chapter ends with an extensive review section that includes the following.

- Properties and Formulas The Properties and Formulas at the end of each chapter contains a summary of the main formulas and procedures of the chapter (see, for instance, pages 422 and 490).
- Concept Check and Concept Check Answers The Concept Check at the end of each chapter is designed to get the students to think about and explain each concept presented in the chapter and then to use the concept in a given problem. This provides a step-by-step review of all the main concepts in a chapter (see, for instance, pages 266, 355, and 756). Answers to the Concept Check questions are on tear-out sheets at the back of the book.
- Review Exercises The Review Exercises at the end of each chapter recapitulate the basic concepts and skills of the chapter and include exercises that combine the different ideas learned in the chapter.
- Chapter Test Each review section concludes with a Chapter Test designed to help students gauge their progress.
- Cumulative Review Tests Cumulative Review Tests following selected chapters are available at the book companion website. These tests contain problems that combine skills and concepts from the preceding chapters. The problems are designed to highlight the connections between the topics in these related chapters.
- Answers Brief answers to odd-numbered exercises in each section (including the review exercises) and to all questions in the Concepts exercises and Chapter Tests, are given in the back of the book.

Mathematical Vignettes Throughout the book we make use of the margins to provide historical notes, key insights, or applications of mathematics in the modern world. These serve to enliven the material and show that mathematics is an important, vital activity and that even at this elementary level it is fundamental to everyday life.

- Mathematical Vignettes These vignettes include biographies of interesting mathematicians and often include a key insight that the mathematician discovered (see, for instance, the vignettes on Viète, page 119; Salt Lake City, page 89; and radiocarbon dating, page 403).
- Mathematics in the Modern World This is a series of vignettes that emphasize the central role of mathematics in current advances in technology and the sciences (see, for instance, pages 338, 742, and 828).

Book Companion Website A website that accompanies this book is located at www.stewartmath.com. The site includes many useful resources for teaching algebra and trigonometry, including the following.

- Discovery Projects Discovery Projects for each chapter are available at the book companion website. The projects are referenced in the text in the appropriate sections. Each project provides a challenging yet accessible set of activities that enable students (perhaps working in groups) to explore in greater depth an interesting aspect of the topic they have just learned (see, for instance, the Discovery Projects Visualizing a Formula, Relations and Functions, Will the Species Survive?, and Computer Graphics II, referenced on pages 34, 199, 788, and 864).
- Focus on Problem Solving Several Focus on Problem Solving sections are available on the website. Each such section highlights one of the problem-solving principles introduced in the Prologue and includes several challenging problems (see for instance Recognizing Patterns, Using Analogy, Introducing Something Extra, Taking Cases, and Working Backward).
- Cumulative Review Tests Cumulative Review Tests following Chapters 4, 7, 9 , 12, and 14 are available on the website.

Acknowledgments

We feel fortunate that all those involved in the production of this book have worked with exceptional energy, intense dedication, and passionate interest. It is surprising how many people are essential in the production of a mathematics textbook, including content editors, reviewers, faculty colleagues, production editors, copy editors, permissions editors, solutions and accuracy checkers, artists, photo researchers, text designers, typesetters, compositors, proofreaders, printers, and many more. We thank them all. We particularly mention the following.

Reviewers for the Third Edition Raji Baradwaj, UMBC; Chris Herman, Lorain County Community College; Irina Kloumova, Sacramento City College; Jim McCleery, Skagit Valley College, Whidbey Island Campus; Sally S. Shao, Cleveland State University; David Slutzky, Gainesville State College; Edward Stumpf, Central Carolina Community College; Ricardo Teixeira, University of Texas at Austin; Taixi Xu, Southern Polytechnic State University; and Anna Wlodarczyk, Florida International University.
Reviewers for the Fourth Edition Mary Ann Teel, University of North Texas; Natalia Kravtsova, The Ohio State University; Belle Sigal, Wake Technical Community College; Charity S. Turner, The Ohio State University; Yu-ing Hargett, Jefferson State Community College-Alabama; Alicia Serfaty de Markus, Miami Dade College; Cathleen Zucco-Teveloff, Rider University; Minal Vora, East Georgia State College; Sutandra Sarkar, Georgia State University; Jennifer Denson, Hillsborough Community College; Candice L. Ridlon, University of Maryland Eastern Shore; Alin Stancu, Columbus State University; Frances Tishkevich, Massachusetts Maritime Academy; Phil Veer, Johnson County Community College; Phillip Miller, Indiana UniversitySoutheast; Mildred Vernia, Indiana University-Southeast; Thurai Kugan, John Jay College-CUNY.

We are grateful to our colleagues who continually share with us their insights into teaching mathematics. We especially thank Robert Mena at California State University, Long Beach; we benefited from his many insights into mathematics and its history. We thank Cecilia McVoy at Penn State Abington for her helpful suggestions. We thank Andrew Bulman-Fleming for writing the Solutions Manual and Doug Shaw at the University of Northern Iowa for writing the Instructor Guide and the Study Guide. We are very grateful to Frances Gulick at the University of Maryland for checking the accuracy
of the entire manuscript and doing each and every exercise; her many suggestions and corrections have contributed greatly to the accuracy and consistency of the contents of this book.

We thank Martha Emry, our production service and art editor; her energy, devotion, and experience are essential components in the creation of this book. We are grateful for her remarkable ability to instantly recall, when needed, any detail of the entire manuscript as well as her extraordinary ability to simultaneously manage several interdependent editing tracks. We thank Barbara Willette, our copy editor, for her attention to every detail in the manuscript and for ensuring a consistent, appropriate style throughout the book. We thank our designer, Diane Beasley, for the elegant and appropriate design for the interior of the book. We thank Graphic World for their attractive and accurate graphs and Precision Graphics for bringing many of our illustrations to life. We thank our compositors at Graphic World for ensuring a balanced and coherent look for each page of the book.

At Cengage Learning we thank Jennifer Risden, content project manager, for her professional management of the production of the book. We thank Lynh Pham, media developer, for his expert handling of many technical issues, including the creation of the book companion website. We thank Vernon Boes, art director, for his capable administration of the design of the book. We thank Mark Linton, marketing manager, for helping bring the book to the attention of those who may wish to use it in their classes.

We particularly thank our developmental editor, Stacy Green, for skillfully guiding and facilitating every aspect of the creation of this book. Her interest in the book, her familiarity with the entire manuscript, and her almost instant responses to our many queries have made the writing of the book an even more enjoyable experience for us.

Above all we thank our acquisitions editor, Gary Whalen. His vast editorial experience, his extensive knowledge of current issues in the teaching of mathematics, his skill in managing the resources needed to enhance this book, and his deep interest in mathematics textbooks have been invaluable assets in the creation of this book.

Ancillaries

Instructor Resources

Instructor Companion Site

Everything you need for your course in one place! This collection of book-specific lecture and class tools is available online via www.cengage.com/login. Access and download PowerPoint presentations, images, instructor's manual, and more.

Complete Solutions Manual

The Complete Solutions Manual provides worked-out solutions to all of the problems in the text. Located on the companion website.

Test Bank

The Test Bank provides chapter tests and final exams, along with answer keys. Located on the companion website.

Instructor's Guide

The Instructor's Guide contains points to stress, suggested time to allot, text discussion topics, core materials for lecture, workshop/discussion suggestions, group work exercises in a form suitable for handout, and suggested homework problems. Located on the companion website.

Cengage Learning Testing Powered by Cognero
 (ISBN-10: 1-305-25111-3; ISBN-13: 978-1-305-25111-3)

CLT is a flexible online system that allows you to author, edit, and manage test bank content; create multiple test versions in an instant; and deliver tests from your LMS, your classroom or wherever you want. This is available online via www.cengage.com/login.

Enhanced WebAssign

Printed Access Card: 978-1-285-85833-3
Instant Access Code: 978-1-285-85831-9
Enhanced WebAssign combines exceptional mathematics content with the most powerful online homework solution, WebAssign ${ }^{\circledR}$. Enhanced WebAssign engages students with immediate feedback, rich tutorial content, and an interactive, fully customizable eBook, Cengage YouBook, to help students to develop a deeper conceptual understanding of their subject matter.

Student Resources

Student Solutions Manual (ISBN-10: 1-305-11815-4; ISBN-13: 978-1-305-11815-7) The Student Solutions Manual contains fully worked-out solutions to all of the oddnumbered exercises in the text, giving students a way to check their answers and ensure that they took the correct steps to arrive at an answer.
Study Guide (ISBN-10: 1-305-11816-2; ISBN-13: 978-1-305-11816-4)
The Study Guide reinforces student understanding with detailed explanations, worked-out examples, and practice problems. It also lists key ideas to master and builds problemsolving skills. There is a section in the Study Guide corresponding to each section in the text.

Text-Specific DVDs (ISBN-10: 1-305-11818-9; ISBN-13: 978-1-305-11818-8)

The Text-Specific DVDs include new learning objective-based lecture videos. These DVDs provide comprehensive coverage of the course-along with additional explanations of concepts, sample problems, and applications-to help students review essential topics.

CengageBrain.com

To access additional course materials, please visit www.cengagebrain.com. At the CengageBrain.com home page, search for the ISBN of your title (from the back cover of your book) using the search box at the top of the page. This will take you to the product page where these resources can be found.

Enhanced WebAssign

Printed Access Card: 978-1-285-85833-3
Instant Access Code: 978-1-285-85831-9
Enhanced WebAssign combines exceptional mathematics content with the most powerful online homework solution, WebAssign. Enhanced WebAssign engages students with immediate feedback, rich tutorial content, and an interactive, fully customizable eBook, Cengage YouBook, helping students to develop a deeper conceptual understanding of the subject matter.

This textbook was written for you to use as a guide to mastering algebra and trigonometry. Here are some suggestions to help you get the most out of your course.

First of all, you should read the appropriate section of text before you attempt your homework problems. Reading a mathematics text is quite different from reading a novel, a newspaper, or even another textbook. You may find that you have to reread a passage several times before you understand it. Pay special attention to the examples, and work them out yourself with pencil and paper as you read. Then do the linked exercises referred to in "Now Try Exercise . . ." at the end of each example. With this kind of preparation you will be able to do your homework much more quickly and with more understanding.

Don't make the mistake of trying to memorize every single rule or fact you may come across. Mathematics doesn't consist simply of memorization. Mathematics is a problem-solving art, not just a collection of facts. To master the subject you must solve problems-lots of problems. Do as many of the exercises as you can. Be sure to write your solutions in a logical, step-by-step fashion. Don't give up on a problem if you can't solve it right away. Try to understand the problem more clearly—reread it thoughtfully and relate it to what you have learned from your instructor and from the examples in the text. Struggle with it until you solve it. Once you have done this a few times you will begin to understand what mathematics is really all about.

Answers to the odd-numbered exercises, as well as all the answers (even and odd) to the concept exercises and chapter tests, appear at the back of the book. If your answer differs from the one given, don't immediately assume that you are wrong. There may be a calculation that connects the two answers and makes both correct. For example, if you get $1 /(\sqrt{2}-1)$ but the answer given is $1+\sqrt{2}$, your answer is correct, because you can multiply both numerator and denominator of your answer by $\sqrt{2}+1$ to change it to the given answer. In rounding approximate answers, follow the guidelines in Appendix B: Calculations and Significant Figures.

The symbol \oslash is used to warn against committing an error. We have placed this symbol in the margin to point out situations where we have found that many of our students make the same mistake.

Abbreviations

The following abbreviations are used throughout the text.

$\mathbf{c m}$	centimeter	$\mathbf{k P a}$	kilopascal	\mathbf{N}	Newton
$\mathbf{d B}$	decibel	\mathbf{L}	liter	$\mathbf{q t}$	quart
\mathbf{F}	farad	$\mathbf{l b}$	pound	$\mathbf{o z}$	ounce
$\mathbf{f t}$	foot	$\mathbf{l m}$	lumen	\mathbf{S}	second
\mathbf{g}	gram	\mathbf{M}	mole of solute	$\mathbf{\Omega}$	ohm
$\mathbf{g a l}$	gallon		per liter of	\mathbf{V}	volt
\mathbf{h}	hour		solution	\mathbf{W}	watt
\mathbf{H}	henry	\mathbf{m}	meter	$\mathbf{y d}$	yard
$\mathbf{H z}$	Hertz	$\mathbf{m g}$	milligram	$\mathbf{y r}$	year
$\mathbf{i n}$.	inch	$\mathbf{M H z}$	megahertz	${ }^{\circ} \mathbf{C}$	degree Celsius
\mathbf{J}	Joule	$\mathbf{m i n}$	mile	${ }^{\circ} \mathbf{F}$	degree Fahrenheit
$\mathbf{k c a l}$	kilocalorie	$\mathbf{m L}$	milliliter	\mathbf{K}	Kelvin
$\mathbf{k g}$	kilogram	$\mathbf{m m}$	millimeter	\Rightarrow	implies
$\mathbf{k m}$	kilometer				is equivalent to

To succeed in your Algebra and Trigonometry course you need to use some of the skills that you learned in your previous mathematics classes. In particular, you need to be familiar with the real number system, algebraic expressions, solving basic equations, and graphing. The following diagnostic tests are designed to assess your knowledge of these topics. After taking each test you can check your answers using the answer key on page xxii. If you have difficulty with any topic, you can refresh your skills by studying the review materials from Chapters P and 1 that are referenced after each test.

A DIAGNOSTIC TEST: Real Numbers and Exponents

1. Perform the indicated operations. Write your final answer as an integer or as a fraction in lowest terms.
(a) $\frac{1}{3}+\frac{1}{2}$
(b) $2-\frac{2}{3}+\frac{1}{4}$
(c) $4\left(2-\frac{2}{3}\right)$
(d) $\frac{12}{\frac{4}{3}+\frac{1}{6}}$
2. Determine whether the given number is an integer, rational, or irrational.
(a) 10
(b) $\frac{16}{3}$
(c) 5^{2}
(d) $\sqrt{5}$
3. Is the inequality true or false?
(a) $-2<0$
(b) $5 \geq 5$
(c) $5>5$
(d) $3 \leq-10$
(e) $-2>-6$
4. Express the inequality in interval notation.
(a) $-1<x \leq 5$
(b) $x<3$
(c) $x \geq 4$
5. Express the interval using inequalities.
(a) $(2, \infty)$
(b) $[-3,-1]$
(c) $[0,9)$
6. Evaluate the expression without using a calculator.
(a) $(-3)^{4}$
(b) -3^{4}
(c) 3^{-4}
(d) $\frac{5^{12}}{5^{10}}$
(e) $\left(\frac{3}{4}\right)^{-2}$
(f) $16^{3 / 4}$
7. Simplify the expression. Write your final answer without negative exponents.
(a) $\left(4 x^{2} y^{3}\right)\left(2 x y^{2}\right)$
(b) $\left(\frac{5 a^{1 / 2}}{a^{2}}\right)^{2}$
(c) $\left(x^{-2} y^{-3}\right)\left(x y^{2}\right)^{2}$

Answers to Test A are on page xxii. If you had difficulty with any of the questions on Test A, you should review the material covered in Sections P.2, P.3, and P.4.

B DIAGNOSTIC TEST: Algebraic Expressions

1. Expand and simplify.
(a) $4(x+3)+5(2 x-1)$
(b) $(x+3)(x-5)$
(c) $(2 x-1)(3 x+2)$
(d) $(a-2 b)(a+2 b)$
(e) $(y-3)^{2}$
(f) $(2 x+5)^{2}$
2. Factor the expression.
(a) $4 x^{2}+2 x$
(b) $3 x y^{2}-6 x^{2} y$
(c) $x^{2}+8 x+15$
(d) $x^{2}-x-2$
(e) $2 x^{2}+5 x-12$
(f) $x^{2}-16$
3. Simplify the rational expression.
(a) $\frac{x^{2}+4 x+3}{x^{2}-2 x-3}$
(b) $\frac{2 x^{2}-3 x-2}{x^{2}-1} \cdot \frac{x+1}{2 x+1}$
(c) $\frac{x^{2}-x}{x^{2}-9}-\frac{x+1}{x+3}$
(d) $\frac{\frac{1}{x}-\frac{1}{y}}{\frac{2}{x y}}$
4. Rationalize the denominator and simplify.
(a) $\frac{\sqrt{3}}{\sqrt{7}}$
(b) $\frac{12}{3-\sqrt{5}}$

Answers to Test B are on page xxii. If you had difficulty with any of the questions on Test B, you should review the material covered in Sections P.5, P.6, and P.7.

C DIAGNOSTIC TEST: Equations

1. Solve the linear equation.
(a) $3 x-1=5$
(b) $2 x+3=8$
(c) $2 x=5 x+6$
(d) $x+11=6-4 x$
2. Solve the equation.
(a) $\frac{1}{3} x=6$
(b) $\frac{1}{2} x-\frac{3}{2}=\frac{7}{2}$
3. Find all real solutions of the equation.
(a) $x^{2}-7=0$
(b) $x^{3}+8=0$
(c) $2 x^{3}-54=0$
(d) $x^{4}-16=0$
4. Solve the equation for the indicated variable.
(a) $4 x+y=108$, for x
(b) $8=\frac{m n}{k^{2}}$, for m

Answers to Test C are on page xxii. If you had difficulty with any of the questions on Test C, you should review the material covered in Section P.8.

D DIAGNOSTIC TEST:The Coordinate Plane

1. Graph the following points in a coordinate plane.
(a) $(2,4)$
(b) $(-1,3)$
(c) $(3,-1)$
(d) $(0,0)$
(e) $(5,0)$
(f) $(0,-1)$
2. Find the distance between the given pair of points.
(a) $(1,3),(5,6)$
(b) $(-2,0),(3,12)$
(c) $(0,-4),(4,0)$
3. Find the midpoint of the segment $P Q$.
(a) $P(3,7), Q(5,13)$
(b) $P(-2,3), Q(8,-7)$
4. Graph the equation in a coordinate plane by plotting points.
(a) $y=x+2$
(b) $y=4-x^{2}$

Answers to Test D are on page xxii. If you had difficulty with any of the questions on Test D, you should review the material covered in Sections 1.1 and 1.2.

ANSWERS TO DIAGNOSTIC TESTS

A Answers

1. (a) $\frac{5}{6}$
(b) $\frac{19}{12}$
(c) $\frac{16}{3}$
(d) 8
2. (a) Integer and rational
(b) Rational
(c) Integer and rational
(d) Irrational
3. (a) True
(b) True
(c) False
(d) False
(e) True
4. (a) $(-1,5]$
(b) $(-\infty, 3)$
(c) $[4, \infty)$
5. (a) $x>2$
(b) $-3 \leq x \leq-1$
(c) $0 \leq x<9$
6. (a) 81
(b) -81
(c) $\frac{1}{81}$
(d) 25
(e) $\frac{16}{9}$
(f) 8
7. (a) $8 x^{3} y^{5}$
(b) $\frac{25}{a^{3}}$
(c) y

B Answers

1. (a) $14 x+7$ (b) $x^{2}-2 x-15$ (c) $6 x^{2}+x-2 \quad$ (d) $a^{2}-4 b^{2}$
(e) $y^{2}-6 y+9$
(f) $4 x^{2}+20 x+25$
2. (a) $2 x(2 x+1)$
(b) $3 x y(y-2 x)$
(c) $(x+3)(x+5)$
(d) $(x-2)(x+1)$
(e) $(2 x-3)(x+4)$
(f) $(x-4)(x+4)$
3. (a) $\frac{x+3}{x-3}$
(b) $\frac{x-2}{x-1}$
(c) $\frac{1}{x-3}$
(d) $\frac{y-x}{2}$
4. (a) $\frac{\sqrt{21}}{7}$
(b) $9+3 \sqrt{5}$

C Answers

1. (a) 2
(b) $\frac{5}{2}$
(c) -2
(d) -1
2. (a) 18
(b) 10
3. (a) $-\sqrt{7}, \sqrt{7}$
(b) -2
(c) 3
(d) $-2,2$
4. (a) $x=27-\frac{1}{4} y$
(b) $m=\frac{8 k^{2}}{n}$

D Answers

1.

2. (a) 5
(b) 13
(c) $4 \sqrt{2} \approx 5.66$
3. (a) $(4,10)$
(b) $(3,-2)$
4.

GEORGE POLYA (1887-1985) is famous among mathematicians for his ideas on problem solving. His lectures on problem solving at Stanford University attracted overflow crowds whom he held on the edges of their seats, leading them to discover solutions for themselves. He was able to do this because of his deep insight into the psychology of problem solving. His well-known book How To Solve It has been translated into 15 languages. He said that Euler (see page 63) was unique among great mathematicians because he explained how he found his results. Polya often said to his students and colleagues, "Yes, I see that your proof is correct, but how did you discover it?" In the preface to How To Solve It, Polya writes, "A great discovery solves a great problem but there is a grain of discovery in the solution of any problem. Your problem may be modest; but if it challenges your curiosity and brings into play your inventive faculties, and if you solve it by your own means, you may experience the tension and enjoy the triumph of discovery."

The ability to solve problems is a highly prized skill in many aspects of our lives; it is certainly an important part of any mathematics course. There are no hard and fast rules that will ensure success in solving problems. However, in this Prologue we outline some general steps in the problem-solving process and we give principles that are useful in solving certain types of problems. These steps and principles are just common sense made explicit. They have been adapted from George Polya's insightful book How To Solve It.

1. Understand the Problem

The first step is to read the problem and make sure that you understand it. Ask yourself the following questions:

> What is the unknown?
> What are the given quantities?
> What are the given conditions?

For many problems it is useful to

draw a diagram

and identify the given and required quantities on the diagram. Usually, it is necessary to

introduce suitable notation

In choosing symbols for the unknown quantities, we often use letters such as a, b, c, m, n, x, and y, but in some cases it helps to use initials as suggestive symbols, for instance, V for volume or t for time.

2. Think of a Plan

Find a connection between the given information and the unknown that enables you to calculate the unknown. It often helps to ask yourself explicitly: "How can I relate the given to the unknown?" If you don't see a connection immediately, the following ideas may be helpful in devising a plan.

- Try to Recognize Something Familiar

Relate the given situation to previous knowledge. Look at the unknown and try to recall a more familiar problem that has a similar unknown.

- Try to Recognize Patterns

Certain problems are solved by recognizing that some kind of pattern is occurring. The pattern could be geometric, numerical, or algebraic. If you can see regularity or repetition in a problem, then you might be able to guess what the pattern is and then prove it.

■ Use Analogy

Try to think of an analogous problem, that is, a similar or related problem but one that is easier than the original. If you can solve the similar, simpler problem, then it might give you the clues you need to solve the original, more difficult one. For instance, if a problem involves very large numbers, you could first try a similar problem with smaller numbers. Or if the problem is in three-dimensional geometry, you could look for something similar in two-dimensional geometry. Or if the problem you start with is a general one, you could first try a special case.

Introduce Something Extra

You might sometimes need to introduce something new-an auxiliary aid-to make the connection between the given and the unknown. For instance, in a problem for which a diagram is useful, the auxiliary aid could be a new line drawn in the diagram. In a more algebraic problem the aid could be a new unknown that relates to the original unknown.

Take Cases

You might sometimes have to split a problem into several cases and give a different argument for each case. For instance, we often have to use this strategy in dealing with absolute value.

■ Work Backward

Sometimes it is useful to imagine that your problem is solved and work backward, step by step, until you arrive at the given data. Then you might be able to reverse your steps and thereby construct a solution to the original problem. This procedure is commonly used in solving equations. For instance, in solving the equation $3 x-5=7$, we suppose that x is a number that satisfies $3 x-5=7$ and work backward. We add 5 to each side of the equation and then divide each side by 3 to get $x=4$. Since each of these steps can be reversed, we have solved the problem.

- Establish Subgoals

In a complex problem it is often useful to set subgoals (in which the desired situation is only partially fulfilled). If you can attain or accomplish these subgoals, then you might be able to build on them to reach your final goal.

■ Indirect Reasoning

Sometimes it is appropriate to attack a problem indirectly. In using proof by contradiction to prove that P implies Q, we assume that P is true and Q is false and try to see why this cannot happen. Somehow we have to use this information and arrive at a contradiction to what we absolutely know is true.

- Mathematical Induction

In proving statements that involve a positive integer n, it is frequently helpful to use the Principle of Mathematical Induction, which is discussed in Section 13.5.

3. Carry Out the Plan

In Step 2, a plan was devised. In carrying out that plan, you must check each stage of the plan and write the details that prove that each stage is correct.

4. Look Back

Having completed your solution, it is wise to look back over it, partly to see whether any errors have been made and partly to see whether you can discover an easier way to solve the problem. Looking back also familiarizes you with the method of solution, which may be useful for solving a future problem. Descartes said, "Every problem that I solved became a rule which served afterwards to solve other problems."

We illustrate some of these principles of problem solving with an example.

PROBLEM - Average Speed

A driver sets out on a journey. For the first half of the distance, she drives at the leisurely pace of $30 \mathrm{mi} / \mathrm{h}$; during the second half she drives $60 \mathrm{mi} / \mathrm{h}$. What is her average speed on this trip?

Understand the problem.

SOLUTION

We need to look more carefully at the meaning of average speed. It is defined as

$$
\text { average speed }=\frac{\text { distance traveled }}{\text { time elapsed }}
$$

Introduce notation.

State what is given.
Let d be the distance traveled on each half of the trip. Let t_{1} and t_{2} be the times taken for the first and second halves of the trip. Now we can write down the information we have been given. For the first half of the trip we have

$$
30=\frac{d}{t_{1}}
$$

and for the second half we have

$$
60=\frac{d}{t_{2}}
$$

Identify the unknown. Now we identify the quantity that we are asked to find:

$$
\text { average speed for entire trip }=\frac{\text { total distance }}{\text { total time }}=\frac{2 d}{t_{1}+t_{2}}
$$

Connect the given with the unknown.

Let's look at an easily calculated special case. Suppose that the total distance traveled is 120 mi . Since the first 60 mi is traveled at $30 \mathrm{mi} / \mathrm{h}$, it takes 2 h . The second 60 mi is traveled at $60 \mathrm{mi} / \mathrm{h}$, so it takes one hour. Thus, the total time is $2+1=3$ hours and the average speed is

$$
\frac{120}{3}=40 \mathrm{mi} / \mathrm{h}
$$

So our guess of $45 \mathrm{mi} / \mathrm{h}$ was wrong.

To calculate this quantity, we need to know t_{1} and t_{2}, so we solve the above equations for these times:

THINKING ABOUT THE PROBLEM

It is tempting to take the average of the speeds and say that the average speed for the entire trip is

$$
\frac{30+60}{2}=45 \mathrm{mi} / \mathrm{h}
$$

But is this simple-minded approach really correct?

$$
t_{1}=\frac{d}{30} \quad t_{2}=\frac{d}{60}
$$

Now we have the ingredients needed to calculate the desired quantity:

$$
\begin{aligned}
\text { average speed } & =\frac{2 d}{t_{1}+t_{2}}=\frac{2 d}{\frac{d}{30}+\frac{d}{60}} \\
& =\frac{60(2 d)}{60\left(\frac{d}{30}+\frac{d}{60}\right)} \quad \begin{array}{l}
\text { Multiply numerator and } \\
\text { denominator by } 60
\end{array} \\
& =\frac{120 d}{2 d+d}=\frac{120 d}{3 d}=40
\end{aligned}
$$

So the average speed for the entire trip is $40 \mathrm{mi} / \mathrm{h}$.

Don't feel bad if you can't solve these problems right away. Problems 1 and 4 were sent to Albert Einstein by his friend Wertheimer. Einstein (and his friend Bucky) enjoyed the problems and wrote back to Wertheimer. Here is part of his reply:

Your letter gave us a lot of amusement. The first intelligence test fooled both of us (Bucky and me). Only on working it out did I notice that no time is available for the downhill run! Mr. Bucky was also taken in by the second example, but I was not. Such drolleries show us how stupid we are!
(See Mathematical Intelligencer, Spring 1990, page 41.)

PROBLEMS

1. Distance, Time, and Speed An old car has to travel a 2-mile route, uphill and down. Because it is so old, the car can climb the first mile-the ascent-no faster than an average speed of $15 \mathrm{mi} / \mathrm{h}$. How fast does the car have to travel the second mile-on the descent it can go faster, of course-to achieve an average speed of $30 \mathrm{mi} / \mathrm{h}$ for the trip?
2. Comparing Discounts Which price is better for the buyer, a 40% discount or two successive discounts of 20% ?
3. Cutting up a Wire A piece of wire is bent as shown in the figure. You can see that one cut through the wire produces four pieces and two parallel cuts produce seven pieces. How many pieces will be produced by 142 parallel cuts? Write a formula for the number of pieces produced by n parallel cuts.

4. Amoeba Propagation An amoeba propagates by simple division; each split takes 3 minutes to complete. When such an amoeba is put into a glass container with a nutrient fluid, the container is full of amoebas in one hour. How long would it take for the container to be filled if we start with not one amoeba, but two?
5. Batting Averages Player A has a higher batting average than player B for the first half of the baseball season. Player A also has a higher batting average than player B for the second half of the season. Is it necessarily true that player A has a higher batting average than player B for the entire season?
6. Coffee and Cream A spoonful of cream is taken from a pitcher of cream and put into a cup of coffee. The coffee is stirred. Then a spoonful of this mixture is put into the pitcher of cream. Is there now more cream in the coffee cup or more coffee in the pitcher of cream?
7. Wrapping the World A ribbon is tied tightly around the earth at the equator. How much more ribbon would you need if you raised the ribbon 1 ft above the equator everywhere? (You don't need to know the radius of the earth to solve this problem.)
8. Ending Up Where You Started A woman starts at a point P on the earth's surface and walks 1 mi south, then 1 mi east, then 1 mi north, and finds herself back at P, the starting point. Describe all points P for which this is possible. [Hint: There are infinitely many such points, all but one of which lie in Antarctica.]

Many more problems and examples that highlight different problem-solving principles are available at the book companion website: www.stewartmath.com. You can try them as you progress through the book.

Andersen Ross/Blend Images/Alamy

p

Prerequisites

P. 1 Modeling the Real World with Algebra

P. 2 Real Numbers
P. 3 Integer Exponents and Scientific Notation
P. 4 Rational Exponents and Radicals
P. 5 Algebraic Expressions
P. 6 Factoring
P. 7 Rational Expressions
P. 8 Solving Basic Equations
P. 9 Modeling with Equations

FOCUS ON MODELING Making the Best Decisions

In this chapter we begin by taking a look at the central reason for studying algebra: its usefulness in describing (or modeling) real-world situations.

In algebra we use letters to stand for numbers. This allows us to write equations and solve problems. Of course, the letters in our equations must obey the same rules that numbers do. So in this chapter we review properties of numbers and algebraic expressions. You are probably already familiar with many of these properties, but it is helpful to get a fresh look at how these properties work together to solve real-world problems.

In the Focus on Modeling at the end of the chapter we see how equations can help us make the best decisions in some everyday situations. This theme of using algebra to model real-world situations is further developed throughout the textbook.

P. 1 MODELING THE REAL WORLD WITH ALGEBRA

Using Algebra Models \quad Making Algebra Models

In algebra we use letters to stand for numbers. This allows us to describe patterns that we see in the real world.

For example, if we let N stand for the number of hours you work and let W stand for your hourly wage, then the formula

$$
P=N W
$$

gives your pay P. The formula $P=N W$ is a description or model for pay. We can also call this formula an algebra model. We summarize the situation as follows:

Real World

You work for an hourly wage. You would like to know your pay for any number of hours worked.

Algebra Model

$P=N W$

The model $P=N W$ gives the pattern for finding the pay for any worker, with any hourly wage, working any number of hours. That's the power of algebra: By using letters to stand for numbers, we can write a single formula that describes many different situations.

We can now use the model $P=N W$ to answer questions such as "I make $\$ 10$ an hour, and I worked 35 hours; how much do I get paid?" or "I make $\$ 8$ an hour; how many hours do I need to work to get paid $\$ 1000$?"

In general, a model is a mathematical representation (such as a formula) of a realworld situation. Modeling is the process of making mathematical models. Once a model has been made, it can be used to answer questions about the thing being modeled.

The examples we study in this section are simple, but the methods are far reaching. This will become more apparent as we explore the applications of algebra in subsequent Focus on Modeling sections that follow each chapter.

Using Algebra Models

We begin our study of modeling by using models that are given to us. In the next subsection we learn how to make our own models.

EXAMPLE 1 Using a Model for Pay

Aaron makes $\$ 9$ an hour at his part-time job. Use the model $P=N W$ to answer the following questions:
(a) Aaron worked 35 hours last week. How much did he get paid?
(b) Aaron wants to earn enough money to buy a calculus text that costs $\$ 126$. How many hours does he need to work to earn this amount?

SOLUTION

(a) We know that $N=35 \mathrm{~h}$ and $W=\$ 9$. To find P, we substitute these values into the model.

$$
\begin{aligned}
P & =N W & & \text { Model } \\
& =35 \times 9 & & \text { Substitute } N=35, W=9 \\
& =315 & & \text { Calculate }
\end{aligned}
$$

So Aaron was paid $\$ 315$.
(b) Aaron's hourly wage is $W=\$ 9$, and the amount of pay he needs to buy the book is $P=\$ 126$. To find N, we substitute these values into the model.

$$
\begin{aligned}
P & =N W & & \text { Model } \\
126 & =9 N & & \text { Substitute } P=126, W=9 \\
\frac{126}{9} & =N & & \text { Divide by } 9 \\
N & =14 & & \text { Calculate }
\end{aligned}
$$

So Aaron must work 14 hours to buy this book.
-. Now Try Exercises 3 and 7

EXAMPLE 2 Using an Elevation-Temperature Model

A mountain climber uses the model

$$
T=20-10 h
$$

to estimate the temperature T (in ${ }^{\circ} \mathrm{C}$) at elevation h (in kilometers, km).
(a) Make a table that gives the temperature for each 1-km change in elevation, from elevation 0 km to elevation 5 km . How does temperature change as elevation increases?
(b) If the temperature is $5^{\circ} \mathrm{C}$, what is the elevation?

SOLUTION

(a) Let's use the model to find the temperature at elevation $h=3 \mathrm{~km}$.

$$
\begin{aligned}
T & =20-10 h & & \text { Model } \\
& =20-10(3) & & \text { Substitute } h=3 \\
& =-10 & & \text { Calculate }
\end{aligned}
$$

So at an elevation of 3 km the temperature is $-10^{\circ} \mathrm{C}$. The other entries in the following table are calculated similarly.

Elevation (km)	Temperature $\left({ }^{\circ} \mathbf{C}\right)$
0	20°
1	10°
2	0°
3	-10°
4	-20°
5	-30°

We see that temperature decreases as elevation increases.

$12 \mathrm{mi} / \mathrm{gal} \quad 40 \mathrm{mi} / \mathrm{gal}$
(b) We substitute $T=5^{\circ} \mathrm{C}$ in the model and solve for h.

$$
\begin{aligned}
T & =20-10 h & & \text { Model } \\
5 & =20-10 h & & \text { Substitute } T=5 \\
-15 & =-10 h & & \text { Subtract } 20 \\
\frac{-15}{-10} & =h & & \text { Divide by }-10 \\
1.5 & =h & & \text { Calculator }
\end{aligned}
$$

The elevation is 1.5 km .
-. Now Try Exercise 11

Making Algebra Models

In the next example we explore the process of making an algebra model for a real-life situation.

EXAMPLE 3 Making a Model for Gas Mileage

The gas mileage of a car is the number of miles it can travel on one gallon of gas.
(a) Find a formula that models gas mileage in terms of the number of miles driven and the number of gallons of gasoline used.
(b) Henry's car used 10.5 gal to drive 230 mi . Find its gas mileage.

THINKING ABOUT THE PROBLEM

Let's try a simple case. If a car uses 2 gal to drive 100 mi , we easily see that

$$
\text { gas mileage }=\frac{100}{2}=50 \mathrm{mi} / \mathrm{gal}
$$

So gas mileage is the number of miles driven divided by the number of gallons used.

SOLUTION

(a) To find the formula we want, we need to assign symbols to the quantities involved.

In Words	In Algebra
Number of miles driven	N
Number of gallons used	G
Gas mileage (mi/gal)	M

We can express the model as follows:

$$
\begin{aligned}
\text { gas mileage } & =\frac{\text { number of miles driven }}{\text { number of gallons used }} \\
M & =\frac{N}{G} \quad \text { Model }
\end{aligned}
$$

(b) To get the gas mileage, we substitute $N=230$ and $G=10.5$ in the formula.

$$
\begin{aligned}
M & =\frac{N}{G} & & \text { Model } \\
& =\frac{230}{10.5} & & \text { Substitute } N=230, G=10.5 \\
& \approx 21.9 & & \text { Calculator }
\end{aligned}
$$

The gas mileage for Henry's car is about $21.9 \mathrm{mi} / \mathrm{gal}$.

- Now Try Exercise 19

P. 1 EXERCISES

CONCEPTS

1. The model $L=4 S$ gives the total number of legs that S sheep have. Using this model, we find that 12 sheep have
$L=$ \qquad legs.
2. Suppose gas costs $\$ 3.50$ a gallon. We make a model for the cost C of buying x gallons of gas by writing the formula
$C=$ \qquad

SKILLS

3-12 ■ Using Models Use the model given to answer the questions about the object or process being modeled.
3. The sales tax T in a certain county is modeled by the formula $T=0.06 x$. Find the sales tax on an item whose price is $\$ 120$.
4. Mintonville School District residents pay a wage tax T that is modeled by the formula $T=0.005 x$. Find the wage tax paid by a resident who earns $\$ 62,000$ per year.
5. The distance d (in mi) driven by a car traveling at a speed of v miles per hour for t hours is given by

$$
d=v t
$$

If the car is driven at $70 \mathrm{mi} / \mathrm{h}$ for 3.5 h , how far has it traveled?
6. The volume V of a cylindrical can is modeled by the formula

$$
V=\pi r^{2} h
$$

where r is the radius and h is the height of the can. Find the volume of a can with radius 3 in . and height 5 in .

7. The gas mileage M (in mi/gal) of a car is modeled by $M=N / G$, where N is the number of miles driven and G is the number of gallons of gas used.
(a) Find the gas mileage M for a car that drove 240 mi on 8 gal of gas.
(b) A car with a gas mileage $M=25 \mathrm{mi} / \mathrm{gal}$ is driven 175 mi . How many gallons of gas are used?
8. A mountain climber models the temperature $T\left(\right.$ in $\left.{ }^{\circ} \mathrm{F}\right)$ at elevation h (in ft) by

$$
T=70-0.003 h
$$

(a) Find the temperature T at an elevation of 1500 ft .
(b) If the temperature is $64^{\circ} \mathrm{F}$, what is the elevation?
9. The portion of a floating iceberg that is below the water surface is much larger than the portion above the surface. The total volume V of an iceberg is modeled by

$$
V=9.5 S
$$

where S is the volume showing above the surface.
(a) Find the total volume of an iceberg if the volume showing above the surface is $4 \mathrm{~km}^{3}$.
(b) Find the volume showing above the surface for an iceberg with total volume $19 \mathrm{~km}^{3}$.
10. The power P measured in horsepower (hp) needed to drive a certain ship at a speed of s knots is modeled by

$$
P=0.06 s^{3}
$$

(a) Find the power needed to drive the ship at 12 knots.
(b) At what speed will a 7.5 -hp engine drive the ship?
.11. An ocean diver models the pressure $P\left(\right.$ in $\left.\mathrm{lb} / \mathrm{in}^{2}\right)$ at depth d (in ft) by

$$
P=14.7+0.45 d
$$

(a) Make a table that gives the pressure for each $10-\mathrm{ft}$ change in depth, from a depth of 0 ft to 60 ft .
(b) If the pressure is $30 \mathrm{lb} / \mathrm{in}^{2}$, what is the depth?
12. Arizonans use an average of 40 gal of water per person each day. The number of gallons W of water used by x Arizonans each day is modeled by $W=40 x$.
(a) Make a table that gives the number of gallons of water used for each 1000-person change in population, from 0 to 5000 .
(b) What is the population of an Arizona town whose water usage is 120,000 gal per day?

13-18 ■ Making Models Write an algebraic formula that models the given quantity.
13. The number N of cents in q quarters
14. The average A of two numbers a and b
15. The cost C of purchasing x gallons of gas at $\$ 3.50$ a gallon
16. The amount T of a 15% tip on a restaurant bill of x dollars
17. The distance d in miles that a car travels in t hours at $60 \mathrm{mi} / \mathrm{h}$
18. The speed r of a boat that travels d miles in 3 h

APPLICATIONS

- 19. Cost of a Pizza A pizza parlor charges $\$ 12$ for a cheese pizza and $\$ 1$ for each topping.
(a) How much does a 3-topping pizza cost?
(b) Find a formula that models the cost C of a pizza with n toppings.
(c) If a pizza costs $\$ 16$, how many toppings does it have?

$n=1$

$n=4$

20. Renting a Car At a certain car rental agency a compact car rents for $\$ 30$ a day and 10ϕ a mile.
(a) How much does it cost to rent a car for 3 days if the car is driven 280 mi ?
(b) Find a formula that models the cost C of renting this car for n days if it is driven m miles.
(c) If the cost for a 3-day rental was $\$ 140$, how many miles was the car driven?
21. Energy Cost for a Car The cost of the electricity needed to drive an all-electric car is about 4 cents per mile. The cost of the gasoline needed to drive the average gasoline-powered car is about 12 cents per mile.
(a) Find a formula that models the energy cost C of driving x miles for (i) the all-electric car and (ii) the average gasoline-powered car.
(b) Find the cost of driving $10,000 \mathrm{mi}$ with each type of car.
22. Volume of Fruit Crate A fruit crate has square ends and is twice as long as it is wide.
(a) Find the volume of the crate if its width is 20 in .
(b) Find a formula for the volume V of the crate in terms of its width x.

23. Grade Point Average In many universities students are given grade points for each credit unit according to the following scale:

A	4 points
B	3 points
C	2 points
D	1 point
F	0 point

For example, a grade of A in a 3 -unit course earns $4 \times 3=12$ grade points and a grade of B in a 5 -unit course earns $3 \times 5=15$ grade points. A student's grade point average (GPA) for these two courses is the total number of grade points earned divided by the number of units; in this case the GPA is $(12+15) / 8=3.375$.
(a) Find a formula for the GPA of a student who earns a grade of A in a units of course work, B in b units, C in c units, D in d units, and F in f units.
(b) Find the GPA of a student who has earned a grade of A in two 3 -unit courses, B in one 4 -unit course, and C in three 3-unit courses.

P. 2 REAL NUMBERS

Real Numbers Properties of Real Numbers Addition and Subtraction Multiplication and Division \square The Real Line \square Sets and Intervals \square Absolute Value and Distance

In the real world we use numbers to measure and compare different quantities. For example, we measure temperature, length, height, weight, blood pressure, distance, speed, acceleration, energy, force, angles, age, cost, and so on. Figure 1 illustrates some situations in which numbers are used. Numbers also allow us to express relationships between different quantities-for example, relationships between the radius and volume of a ball, between miles driven and gas used, or between education level and starting salary.

FIGURE 1 Measuring with real numbers

Real Numbers

Let's review the types of numbers that make up the real number system. We start with the natural numbers:

$$
1,2,3,4, \ldots
$$

The integers consist of the natural numbers together with their negatives and 0 :

$$
\ldots,-3,-2,-1,0,1,2,3,4, \ldots
$$

We construct the rational numbers by taking ratios of integers. Thus any rational number r can be expressed as

$$
r=\frac{m}{n}
$$

where m and n are integers and $n \neq 0$. Examples are

$$
\frac{1}{2} \quad-\frac{3}{7} \quad 46=\frac{46}{1} \quad 0.17=\frac{17}{100}
$$

(Recall that division by 0 is always ruled out, so expressions like $\frac{3}{0}$ and $\frac{0}{0}$ are undefined.) There are also real numbers, such as $\sqrt{2}$, that cannot be expressed as a ratio of integers and are therefore called irrational numbers. It can be shown, with varying degrees of difficulty, that these numbers are also irrational:

$$
\sqrt{3} \quad \sqrt{5} \quad \sqrt[3]{2} \quad \pi \quad \frac{3}{\pi^{2}}
$$

The set of all real numbers is usually denoted by the symbol \mathbb{R}. When we use the word number without qualification, we will mean "real number." Figure 2 is a diagram of the types of real numbers that we work with in this book.

Every real number has a decimal representation. If the number is rational, then its corresponding decimal is repeating. For example,

$$
\begin{aligned}
\frac{1}{2} & =0.5000 \ldots=0.5 \overline{0} & \frac{2}{3} & =0.66666 \ldots=0 . \overline{6} \\
\frac{157}{495} & =0.3171717 \ldots=0.3 \overline{17} & \frac{9}{7} & =1.285714285714 \ldots=1 . \overline{285714}
\end{aligned}
$$

(The bar indicates that the sequence of digits repeats forever.) If the number is irrational, the decimal representation is nonrepeating:

$$
\sqrt{2}=1.414213562373095 \ldots \quad \pi=3.141592653589793 \ldots
$$

If we stop the decimal expansion of any number at a certain place, we get an approximation to the number. For instance, we can write

$$
\pi \approx 3.14159265
$$

where the symbol $\approx \mathrm{is} \mathrm{read} \mathrm{"is} \mathrm{approximately} \mathrm{equal} \mathrm{to."} \mathrm{The} \mathrm{more} \mathrm{decimal} \mathrm{places} \mathrm{we}$ retain, the better our approximation.

Properties of Real Numbers

We all know that $2+3=3+2$, and $5+7=7+5$, and $513+87=87+513$, and so on. In algebra we express all these (infinitely many) facts by writing

$$
a+b=b+a
$$

where a and b stand for any two numbers. In other words, " $a+b=b+a$ " is a concise way of saying that "when we add two numbers, the order of addition doesn't matter." This fact is called the Commutative Property of addition. From our experience with numbers we know that the properties in the following box are also valid.

PROPERTIES OF REAL NUMBERS

Property

Example

Commutative Properties

$a+b=b+a$
$a b=b a$

Associative Properties

$(a+b)+c=a+(b+c) \quad(2+4)+7=2+(4+7)$
$(a b) c=a(b c)$
$(3 \cdot 7) \cdot 5=3 \cdot(7 \cdot 5)$

Distributive Property

$$
\begin{array}{lll}
a(b+c)=a b+a c & 2 \cdot(3+5)=2 \cdot 3+2 \cdot 5 \\
(b+c) a=a b+a c & & (3+5) \cdot 2=2 \cdot 3+2 \cdot 5
\end{array}
$$

Description

When we add two numbers, order doesn't matter.
When we multiply two numbers, order doesn't matter.

When we add three numbers, it doesn't matter which two we add first.

When we multiply three numbers, it doesn't matter which two we multiply first.

When we multiply a number by a sum of two numbers, we get the same result as we get if we multiply the number by each of the terms and then add the results.

The Distributive Property is crucial because it describes the way addition and multiplication interact with each other.

The Distributive Property applies whenever we multiply a number by a sum. Figure 3 explains why this property works for the case in which all the numbers are positive integers, but the property is true for any real numbers a, b, and c.

FIGURE 3 The Distributive Property

EXAMPLE 1 Using the Distributive Property

(a) $2(x+3)=2 \cdot x+2 \cdot 3$

$$
=2 x+6 \quad \text { Simplify }
$$

Distributive Property

$$
\text { (b) } \begin{aligned}
\overbrace{(a+b)}(x+y) & =(a+b) x+(a+b) y & & \text { Distributive Property } \\
& =(a x+b x)+(a y+b y) & & \text { Distributive Property } \\
& =a x+b x+a y+b y & & \text { Associative Property of Addition }
\end{aligned}
$$

In the last step we removed the parentheses because, according to the Associative Property, the order of addition doesn't matter.

Addition and Subtraction

Don't assume that $-a$ is a negative number. Whether $-a$ is negative or positive depends on the value of a. For example, if $a=5$, then $-a=-5$, a negative number, but if $a=-5$, then $-a=-(-5)=5$ (Property 2), a positive number.

The number 0 is special for addition; it is called the additive identity because $a+0=a$ for any real number a. Every real number a has a negative, $-a$, that satisfies $a+(-a)=0$. Subtraction is the operation that undoes addition; to subtract a number from another, we simply add the negative of that number. By definition

$$
a-b=a+(-b)
$$

To combine real numbers involving negatives, we use the following properties.

PROPERTIES OF NEGATIVES

Property

1. $(-1) a=-a$
2. $-(-a)=a$
3. $(-a) b=a(-b)=-(a b)$
4. $(-a)(-b)=a b$
5. $-(a+b)=-a-b$
6. $-(a-b)=b-a$

Example

$(-1) 5=-5$
$-(-5)=5$
$(-5) 7=5(-7)=-(5 \cdot 7)$
$(-4)(-3)=4 \cdot 3$
$-(3+5)=-3-5$
$-(5-8)=8-5$

Property 6 states the intuitive fact that $a-b$ and $b-a$ are negatives of each other. Property 5 is often used with more than two terms:

$$
-(a+b+c)=-a-b-c
$$

EXAMPLE 2 Using Properties of Negatives

Let x, y, and z be real numbers.
(a) $-(x+2)=-x-2$
(b) $-(x+y-z)=-x-y-(-z)$
Property 5: $-(a+b)=-a-b$
Property 5: $-(a+b)=-a-b$

$$
=-x-y+z
$$

Property 2: $-(-a)=a$

- Now Try Exercise 27

Multiplication and Division

The number 1 is special for multiplication; it is called the multiplicative identity because $a \cdot 1=a$ for any real number a. Every nonzero real number a has an inverse, $1 / a$, that satisfies $a \cdot(1 / a)=1$. Division is the operation that undoes multiplication;

